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Born-Oppenheimer Approximation 

The many-particle Schrödinger wave equation is

the wave function ψ, in general, is a function of all electronic and 
nuclear coordinates and of the time t. That is, 

where the ri are the electronic coordinates and the Rl are the 
nuclear coordinates. The Hamiltonian Hc of the crystal is 

m is the electronic mass, Ml is the mass of the nucleus located at 
Rl, Zl is the atomic number of the nucleus at Rl, and e has the 
magnitude of the electronic charge. 



Here, TE be the kinetic energy of the electrons, TN be the kinetic 
energy of the nuclei, and U be the total Coulomb energy of 
interaction of the nuclei and the electrons. 

By simplification, we can also write

= H0+ TN ,

Nuclei have large masses and hence in general they have small kinetic 
energies. Thus in the above expression, it makes some sense to regard 
TN as a perturbation on H0. Under the adiabatic approximation, the 
total wave function ψn(ri, Rl) can be written as a product of the 
electronic wave function φn(ri) (with the nuclei fixed) times the nuclear 
wave function X(Rl) (with the electrons in some fixed state). In this 
approximation the electrons provide a potential energy for the motion 
of the nuclei while the moving nuclei continuously deform the wave 
function of the electrons.

ψn(ri, Rl) = φn(ri)X(Rl) , where n labels an electronic state. 



Crystal Dynamics

• Atomic motions are governed by the forces exerted on atoms when

they are displaced from their equilibrium positions.

• At any finite temperature, the lattice structure is not static and there 

will be thermal vibrations. 

• These lattice vibrations can be described in terms of normal modes 

describing the collective vibration of atoms. The quanta of these 

normal modes are called phonons. 

• To calculate the forces it is necessary to determine the wavefunctions

and energies of the electrons within the crystal. Fortunately many

important properties of the atomic motions can be deduced without

doing these calculations.

• The phonons mainly contribute both to the specific heat and the 

thermal conduction of the crystal, and they are also important 

because of their interaction with other energy excitations, causing 

electrical resistivity and thermal expansion. 



When a wave propagates along one of symmetric directions in cubic 
crystals, entire planes of atoms move in phase with displacements u either 
parallel or perpendicular to the direction of the wavevector. We can 
simplify the problem to one dimension. For each wavevector there are 
three modes as solutions for u, one of longitudinal polarization and two of 
transverse polarization. 

Longitudinal Plane Waves Transverse Plane Waves

Three Modes of Plane Waves



The total force on plane s is

The equation of motion of an 
atom in plane s is

Assume the solution contains 

time dependent term e-iωt, 
then

Longitudinal Plane Waves
For brevity we consider only nearest-neighbor interactions, with p = ± 1. 

where M is the mass of an atom. 

planes displacedplanes in equilibrium

a

,    u << a



We then have

or

is a difference equation and has traveling wave

solution of the form:

where a is the spacing between planes and K is the wavevector and a ∥ K.  



First Brillouin Zone

The ratio of the displacements of two successive planes is given by

The fist Brillouin zone of  a linear lattice is defined by                       , and all 

the displacement can be described by a wavevector within the first zone.

At the zone boundaries, K  = ± 𝜋/a , whence

The range −𝜋 to +𝜋 for the phase Ka covers all independent values of the 
exponential. 

This is a standing wave: alternate atoms oscillate in opposite phases, 
because us = ± 1 according to whether s is an even or an odd integer. The 
wave moves neither to the right nor to the left. 



For the linear lattice, we thus have

Near zone center where Ka << 1,

At zone boundaries where Ka = ±𝜋,

vg = 0

vg = const.

Group Velocity

The transmission velocity of a wave packet is the group velocity, given as 

the gradient of the frequency with respect to K. 



Force Beyond Nearest Neighbors

The dispersion relation generalized to include p nearest planes is

To obtain Cp, multiplying both sides by cos(rKa) and integrating over K

The integral vanishes except for p = r. 
Thus 

gives the force constant at range pa, for a structure with a monatomic 
basis. 



Vibrations of Diatomic Crystal

Considering forces from the nearest planes only, the equations of 
motion are



We look for a solution in the form of a traveling wave such as

Here a is the distance between nearest identical planes, not nearest 
neighbor planes. We then have

or

Near zone center where Ka << 1,

At zone boundaries where Ka = ±𝜋,

(optical branch) 

(acoustical branch) 

𝑣s



Illustration of Optical and Acoustic Modes

M1 and M2 vibrate out of 
phase which can be excited by 
the electromagnetic waves.

u ≃ v  at K ~ 0 ,

• With p atoms in the primitive cell and N primitive cells, there are a total 

of 3pN degrees of freedom for the crystal. Acoustical modes (TA and LA) 

will contribute 3N of the total degrees of freedom. The remaining (3p 

−3)N are accommodated by the optical branches.

• Wavelike solutions do not exist for certain frequencies, which is 

characteristic of elastic waves in polyatomic lattices.

whence the term acoustic branch.

The atoms vibrate against each other, but their center of mass is fixed. 



Transverse optical mode for 
diatomic chain 

Amplitude of vibration is strongly exaggerated! 

The optical branch is a higher energy vibration. The term “optical” 

comes from how these were discovered - notice that if atom 1 is 

positively charged and atom 2 is negative, that the charges are moving 

in opposite directions. You can excite these modes with the oscillating 

electric fields of EM radiations.



Transverse acoustical mode for 
diatomic chain 

The acoustic branch has this name because it gives rise to long 
wavelength vibrations - speed of sound.



Phonons

• The regular lattice of atoms are tied together with bonds, so they can't 

vibrate independently. The vibrations take the form of collective modes 

which propagate through the material. 

• There should be energy associated with the vibrations of these atoms, 

which is quantized, the quantum of the vibration energy is a “phonon”. 

A phonon is an excited state in the quantum mechanical quantization of 

the modes of vibrations for elastic structures of interacting particles.

• The vibrational energies of molecules are quantized and treated as 

quantum harmonic oscillators with

    when the mode is excited to quantum number n.

• Such propagating lattice vibrations can be considered to be sound 

waves, and their propagation speed is the speed of sound in the 

material. 



Measurement of  Phonon Dispersion

KBr

A phonon of wavevector K will interact with particles such as photons, 
neutrons, and electrons as if it had a momentum ℏK. However, a phonon 
does not carry physical momentum. 

Phonon dispersion relations ω(K) are most often determined experimen- 
tally by the inelastic scattering of neutrons with the emission or absorption 
of a phonon. If a phonon of K is emitted (+) or absorbed (−) in the 
scattering of a neutron k by the crystal, then

and



s
phonon

h
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=

PHONONS

• Quanta of lattice vibrations

• Energies of phonons are
quantized

~a0=10-10m

phonon

h
p


=

PHOTONS

• Quanta of electromagnetic 
radiation

• Energies of photons are 
quantized as well

photon

hc
E


=

visible 
~5x10-7m

photon

h
p


=

~ 2.5 eV~ 26 meV



Phonon Heat Capacity

Energy given to lattice vibrations (or phonons) is the dominant contribution

to the heat capacity in most solids. In non-magnetic insulators, it is the only

contribution. Calculation of the lattice energy and heat capacity of a solid

therefore falls into two parts: i) the evaluation of the contribution of a

single mode, and ii) the summation over the frequency distribution of the

modes. The heat capacity at constant volume is defined as

The total energy of the phonons at temperature T in a crystal can be

written as the sum of the energies over all phonon modes, here indexed by

the wavevector K and polarization index p.

where <nK,p> is the thermal equilibrium occupancy of phonons of 
wavevector K and polarization p. 

CV = (∂U/∂T)V , where U is the energy and T the temperature. 



Planck Distribution

Boltzmann distribution (also called Gibbs distribution) is a probability 

measure Pi that gives the probability that a system will be in a 

certain state as a function of that state's energy ϵi and the temperature T 

of the system.

The ratio of probabilities of two states is known as the Boltzmann 
factor and characteristically only depends on the states' energy 
difference:

Consider a set of identical harmonic oscillators in thermal equilibrium. 
The ratio of the number of oscillators in their (n + 1)th quantum state of 
excitation to the number in the nth quantum state is 



Since

𝜏 = kBT
,

With                                , we have the Planck distribution function:

The fraction of the total number of oscillators in the nth quantum state is

Pn =

<n> =  ∑ nPn

We see that the average excitation quantum number of an oscillator is 

if x <<1.



An oscillator in thermal equilibrium at temperature T, we can prove, using the 

similar procedure before,  the average energy of an oscillator is

<ϵ> =(<n> + ½)ℏω , and<n> is the expected value of the quantum number n 

of an oscillator in thermal equilibrium at temperature T. 

Thermal Energy of Oscillators

The energy of a collection of oscillators of frequencies ωK,p in thermal 

equilibrium at temperature T is found, 

It is usually convenient to replace the summation over K by an integral. 
Suppose that the crystal has Dp(ω)dω modes of a given polarization p in the 
frequency range ω to ω + dω. Then the energy is 

The lattice heat capacity is found by differentiation with respect to 
temperature. Let x = ℏω/𝜏 = ℏω/kBT: then ∂U/∂T gives 

𝜏 = kBT,



Density of Modes of a Linear Chain

We assume that the particles s = 0 and s = N at the ends of  the line with 

length L are held fixed. Each normal vibration mode of polarization p has 

the form of a standing wave, where us is the displacement of particle s:

s = 0 s = N

L = Na

a us

The wavevector K is restricted by the fixed-end boundary conditions to 

the values:

where ωK,p is related to K by the appropriate dispersion relation.

The solution for K = N𝜋/L = 𝜋/a = Kmax has us ∝ sin s𝜋; this permits no 
motion of any atom, because sin s𝜋 vanishes at each atom. 

The number of modes per unit range of K is L/𝜋 for K ≤ 𝜋/a, and 0 for 
K > 𝜋/a. 



With the periodic boundary conditions,                                     and

We have now both plus and minus values of K, 

with the interval  ∆K = 2𝜋/L.

We need to know D(ω), the number of modes per unit frequency range 
for a given polarization. The number of modes D(ω) dω in dω at ω is given 
in one dimension by 

We can obtain the group velocity dω/dK from the dispersion relation ω
versus K. 

, the allowed values of K are 

The number of modes per unit range of K is L/2𝜋
for −𝜋/a ≤ K ≤ 𝜋/a, and 0 otherwise. 



Density of Modes in 3D

whence

We apply periodic boundary conditions over N3 primitive cells within a 
cube of side L, so that K is determined by the condition 

Therefore, there is one allowed value of K per volume (2𝜋/L)3 in K space, or 

allowed values of K per unit volume of K space, for 
each polarization and for each branch. 

The total number of modes with wavevector less than K is 

The density of states for each polarization is 



Debye Model of Density of Modes

The density of modes becomes

In the Debye approximation the velocity of sound is taken as constant for 
each polarization type, as it would be for a classical elastic continuum. The 
dispersion relation is written as 

with v the constant velocity of sound. 

If there are N primitive cells in the specimen, the total number of acoustic 
phonon modes is N. A cutoff frequency ωD is determined as 

To this frequency there corresponds a cutoff wavevector in K space: 

On the Debye model we do not allow modes of wavevector larger than 
KD. The number of modes with K ≤ KD exhausts the number of degrees of 
freedom of a monatomic lattice. 



The thermal energy U for each polarization type is then

Here we define Debye temperature 𝜃 as:

Assume the phonon velocity is independent of the polarization, we 
simply multiply the above U by 3, then

The total thermal energy U is 

where                                          and

where N is the number of atoms in the specimen and xD = 𝜃/T.



Heat Capacity with Debye Model

At very low temperature, i.e. T << 𝜃, we can replace the upper limit of the 

integral for the total thermal energy U to infinity. Since

The heat capacity Cv 

At very high temperature, i.e. T >> 𝜃, 

Cv ~ 3NkB,  this is the classical limit. 

which is the Debye T3 approximation. 

solid argon 

we have then 



Einstein Model of Density of Modes

Experimental data of the heat 
capacity of Diamond compared 
with the values derived from 
the Einstein model

The Einstein density of states is D(ω’) = N𝛿(ω’ − ω), where the delta 
function is centered at ω, considering N oscillators of the same frequency ω in 

one dimension. The thermal energy of the system is 

The heat capacity of the oscillators is 



General Form of Density of Modes

vg = 0

where the integral is extended over the volume of the shell in K space 
bounded by the two surfaces on which the phonon frequency is constant, 
one surface on which the frequency is ω and the other on which the 
frequency is ω + dω. 

and

The gradient of ω, which is 𝝯Kω, is also normal to the surface ω constant, 
and the quantity 

where                          is the 
magnitude of the group 
velocity of a phonon. 



Any real crystal resists compression to a

smaller volume than its equilibrium value

more strongly than expansion to a larger

volume. This is due to the asymmetric

shape of the interatomic potential curve.

This is an anharmonic effect due to the

higher order terms in potential which are

ignored in harmonic approximation of U(r)

~ Cr2.

Thermal expansion is an example to the

anharmonic effect. In anharmonic effect

phonons collide with each other and these

collisions limit thermal conductivity which

is due to the flow of phonons.

Anharmonic Effects

Harmonic approx.

U(r) ~ Cr2



We choose a representation of interatomic potential beyond the simple 
harmonic approximation for a two-atom system separated by x as

Thermal Expansion

where c, g, f all positive

Solid Argon

Thermal expansion is 

We calculate the average displacement by using the Boltzmann distribution 
function with 



Thermal Conductivity

This process is a random process, which means the thermal energy was 

transferred through frequent collisions in the specimen. The random 

nature of the conductivity process brings the temperature gradient and a 

mean free path into the above expression. 

The thermal conductivity coefficient for gases is

Debye was first applying it to describe the thermal conductivity in solids, 

with C as the heat capacity of the phonons, 𝑣 the phonon velocity, and 𝓁 

the phonon mean free path.

The thermal conductivity coefficient K of a solid with the temperature 
gradient along x is defined as 

where jU is the flux of thermal energy, or the energy transmitted across 
unit area per unit time. 



Phonon-Phonon Collisions

If the forces between atoms were purely harmonic, there would be no 

mechanism for collisions between different phonons. Then, the 

phonon mean free path 𝓁 is determined principally by collision with 

the lattice imperfections and boundaries. However, such collisions do 

not change the energy of indivisual phonons.

With anharmonic lattice interactions, there is a coupling between 

different phonons, which limits the value of the mean free path, and 𝓁 

∝ 1/T.  In addition, we also need to establish a local thermal 

equilibrium distribution of phonons.

For a three-phonon collision process, it is remarkable that under 

normal scattering condition, K1 + K2 = K3, the total momentum of the 

phonon gas is not changed by such a collision. So the process will not 

establish the thermal equilibrium.



Umklapp Processes

K1 + K2 = K3 K1 + K2 = K3 + G

Umklapp Process or U processNormal Process or N process

1st BZ



Raman Spectroscopy 

where ω0, k0 and ω, k characterize the incident and scattered light waves, 
respectively.

Raman Spectroscopy is an important method using laser for investigating 

elementary excitations in solids, for example, phonons and plasmons. As 

for all scattering from time-varying structures, energy must be conserved 

and, to within a reciprocal lattice vector G, wave vector too, i.e. we have 

ℏω0 − ℏω ± ℏω(K) = 0   and  ℏk0 − ℏk ± ℏK + ℏG = 0

For light in the visible region of the spectrum, |k0| and |k| are of the 

order of 1/1000 of a reciprocal lattice vector, which means that only 

excitations in the center of the Brillouin zone (|K| ~ 0) can take part in 

Raman scattering. 

The interaction of visible light with the solid occurs via the polarizability 

of the valence electrons. The electric field ℰ0 of the incident light wave 

induces, via the susceptibility tensor 𝛘 a polarization P, i.e. 

and



The energy flux density in direction s, i.e. the Poynting vector S, at 

distance r from the dipole as 

If

and

P

and X : phonon displacement



Problems

1.



2.

3.
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